Rutgers University: Algebra Written Qualifying Exam

 August 2018: Problem 3 SolutionExercise. Let M be a square matrix with complex coefficients. We consider the usual matrix exponential

$$
\exp (M)=\sum_{j=0}^{\infty} \frac{1}{j!} M^{j}
$$

Prove that $\exp (M)$ is equal to the identity matrix if and only if M is diagonalizable with eigenvalues in $2 \pi \mathbb{Z}$.

Solution.

If λ is an eigenvalue of M then $\exists \vec{v}$ such that $M \vec{v}=\lambda \vec{v}$

$$
\begin{aligned}
\Longrightarrow \exp (M) \vec{v} & =\left(\sum_{j=0}^{\infty} \frac{1}{j!} M^{j}\right) \vec{v} \\
& =\sum_{j=0}^{\infty} \frac{1}{j!} M^{j} \vec{v} \\
& =\sum_{j=0}^{\infty} \frac{1}{j!} \lambda^{j} \vec{v} \\
& =e^{\lambda} \vec{v}
\end{aligned}
$$

Thus, e^{λ} is an eigenvalue of $\exp (M)$, and \vec{v} is the corresponding eigenvector.
Also, $e^{\lambda}=1 \Longleftrightarrow \in 2 \pi \mathbb{Z}$.
Therefore, the eigenvalues of $\exp (M)$ are all $1 \Longleftrightarrow M$ has eigenvalues in $2 \pi \mathbb{Z}$.
Also, M is diagonalizable $\Longleftrightarrow q_{M}(x)$ has simple roots
\Longleftrightarrow the JCF of M has Jordan blocks of size 1
$\Longleftrightarrow M$ has n Jordan blocks
Thus,
M is diagonalizable with eigenvalues in $2 \pi \mathbb{Z}$
$\Longleftrightarrow M$ has eigenvalues $\left\{\lambda_{1} \ldots, \lambda_{m}\right\} \subseteq 2 \pi \mathbb{Z}$ and M has n Jordan blocks
$\Longleftrightarrow M$ has eigenvalues $\left\{\lambda_{1} \ldots, \lambda_{m}\right\} \subseteq 2 \pi \mathbb{Z}$ and $\sum_{i=1}^{m} \operatorname{dim}\left(\lambda_{i}\right.$-eigenspace $)=n$
$\Longleftrightarrow M$ has eigenvalues $\left\{\lambda_{1} \ldots, \lambda_{m}\right\} \subseteq 2 \pi \mathbb{Z}$ and $\sum_{i=1}^{m}\left(\#\right.$ of eigenvectors for $\left.\lambda_{i}\right)=n$
Let $\left\{v_{1}, \ldots, v_{n}\right\}$ denote these linearly independent eigen vectors.
$\Longleftrightarrow\left\{v_{1}, \ldots, v_{n}\right\}$ are eigenvectors for $\exp (M)$ and the eigenvalues for $\exp (M)$ are 1
$\Longleftrightarrow \exp (M)$ has n Jordan blocks and eigenvalue 1 .
$\Longleftrightarrow \exp (M)=I$

