Rutgers University: Algebra Written Qualifying Exam August 2018: Problem 3 Solution

Exercise. Let M be a square matrix with complex coefficients. We consider the usual matrix exponential

$$\exp(M) = \sum_{j=0}^{\infty} \frac{1}{j!} M^j.$$

Prove that $\exp(M)$ is equal to the identity matrix if and only if M is diagonalizable with eigenvalues in $2\pi\mathbb{Z}$.

Solution.
If λ is an eigenvalue of M then $\exists \vec{v}$ such that $M\vec{v} = \lambda\vec{v}$
$\implies \exp(M)\vec{v} = \left(\sum_{j=0}^{\infty} \frac{1}{j!}M^j\right)\vec{v}$
$=\sum_{j=0}^{\infty}\frac{1}{j!}M^{j}\vec{v}$
$=\sum_{j=0}^{\infty}\frac{1}{j!}\lambda^{j}\vec{v}$ $=e^{\lambda}\vec{v}$
Thus, e^{λ} is an eigenvalue of $\exp(M)$, and \vec{v} is the corresponding eigenvector. Also, $e^{\lambda} = 1 \iff \in 2\pi\mathbb{Z}$.
Therefore, the eigenvalues of $\exp(M)$ are all $1 \iff M$ has eigenvalues in $2\pi\mathbb{Z}$.
Also, M is diagonalizable $\iff q_M(x)$ has simple roots
\iff the JCF of <i>M</i> has Jordan blocks of size 1 \iff <i>M</i> has <i>n</i> Jordan blocks
Thus,
M is diagonalizable with eigenvalues in $2\pi\mathbb{Z}$
$\iff M$ has eigenvalues $\{\lambda_1, \ldots, \lambda_m\} \subseteq 2\pi\mathbb{Z}$ and M has n Jordan blocks
$\iff M$ has eigenvalues $\{\lambda_1, \ldots, \lambda_m\} \subseteq 2\pi\mathbb{Z}$ and $\sum_{i=1}^m \dim(\lambda_i \text{-eigenspace}) = n$
$\iff M$ has eigenvalues $\{\lambda_1, \ldots, \lambda_m\} \subseteq 2\pi\mathbb{Z}$ and $\sum_{i=1}^{\infty} (\# \text{ of eigenvectors for } \lambda_i) = n$.
$\Leftrightarrow \{v_1, \dots, v_n\}$ are eigenvectors for $\exp(M)$ and the eigenvalues for $\exp(M)$ are 1
$\iff \exp(M)$ has n Jordan blocks and eigenvalue 1.
$\iff \exp(M) = I$